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Summary. We discuss semi-discrete three-point finite difference methods for the 
numerical solution of systems of conservation laws which are second order accu- 
rate in space in the sense of truncation error. Particular discretizations of the 
numerical entropy flux associated with such schemes are studied clarifying the 
importance of this discretization with regard to the production of numerical 
entropy. Using a numerical entropy flux constructed in a canonical way we prove 
that a wide class of finite difference methods cannot satisfy a discrete entropy 
inequality. Together with a well known result of Schonbek concerning Lax- 
Wendroff type schemes our result indicates a strong relationship between entropy 
production and oscillations in numerical solutions. 

Mathematics Subject Classifikation (I991)" 65M06, 65M12, 65M20 

1 Introduction 

Let D := {(x, t ) e N  x ~.~- } be a half plane in ~2  and f2 c IR m an open set which 
will be called state space. If u0 e [B Vlor n L ~~ ] (IR; O) then u E [B V~oc c~ L ~ ] (D; f2) 
is called a weak solution of the Cauchy problem 

(1) O,u + 8~f(u) = 0 

(2) u(x,O) = Uo(X), xe IR  

if 

(3) Vq~C~(D; Q ) : I  {uTO, ~ + f ( u ) r  c~q)} dxdt  + 
D 

(4) + ~ {Uo(X)T~(x, 0)} dx = O. 
R 

* The research reported here was supported by a grant from the Stiftung Volkswagenwerk, 
Federal Republic of Germany. It is a part of the doctoral thesis of the above author, Universitiit 
Stuttgart, 1991. 
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In the case of solutions containing only jump discontinuities this definition is 
equivalent to the celebrated Rankine-Hugoniot condition encountered in gas 
dynamics [14]�9 

Equations of the form (1) are called conservation laws, since the integral of uo 
with respect to the x-coordinate is conserved in time. The function f is called the 
flux function which is assumed to be nonlinear but of class C2(f2; lRm). We always 
assume hyperbolicity of the problem in the sense of Friedrichs, i.e. the Jacobian 

Vuf 
matrix f2 ~ s ~ Vuf(s) e R m • m of f exhibits exactly m real eigenvalues (1 (s) < (2(s) < 

�9 �9 �9 < (re(S) and m linearly independent eigenvectors rk:Vk = l(1)m: 
Vuf(s)rk(s) = (k(s)rk(s). 

Some structural properties of weak solutions are worth mentioning. For  a de- 
tailed account the reader is referred to [2]. For 1 < k <- m the k-th characteristic 

dx 
wave field consists of the curves ~ -  = (k(U(X, t)). It is called genuinely nonlinear if 

for all s~ f2: (Vu(k(s))Trk(s) ~ O, otherwise it is called linearly degenerate. In the 
case of a genuinely nonlinear field the normalization (V,(k(S))Trk(S) = 1 is as- 

sumed. A continuously differentiable function I2~s ~ R ( s ) ~  is called a k-th 

Riemann invariant if for all s s f2: rk(s)TV~ R (s) = 0. If u e [ C 1 ] (G; f2) is a solution 
of( l )  in a domain G c D and if all k-th Riemann invariants are constant in G, then 
u is called a k-simple wave or k-rarefaction wave. A k-rarefaction wave is called 

centered at (xo, to)eG if u(x, t) = u - -  
\ t - t o / "  

For  further reference we cite an important theorem concerning the existence of 
a parametrization of genuinely nonlinear wave fields. The proof of this theorem can 
be found in [14]. 

Theorem 1. Let the k-th characteristic wave field be genuinely nonlinear in f2 and 
normalized. Let UL ~ f2. Then there exists a one-parameter family of  states 

(5) IR = [O,a ]~e  ~ u(e)~t2 

for an a > 0 each member of which can be connected with UL by a centered k- 
rarefaction wave. Furthermore the expressions 

(6) u(O) = U L 

(7) de ~=o = rk(UL) 

are valid. 

Most of the problems concerning existence of weak solutions to (1), (2) are still 
open, except in the case of systems exhibiting genuinely nonlinear wave fields 
exclusively [4]. It is well known [14] that weak solutions are not uniquely 
determined. We recall the following definition [6]: 
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Definition 1. A pair of functions f2~s  ~-~ t l(s)~IR, f2~s  ~ q ( s ) e l R  is called an 
entropy pair for the conservation law (1) if 

1. t/is strictly convex, and 
2. the fundamental compatibility relation 

(8) Vs ~ f2 : V~t l ( s )TVuf (s )  = V~q(s) T 

holds. The function t/is called entropy while q is called entropy flux. 

The compatibility relation (8) follows easily from the quasilinear form of (1) 
multiplied by V~t/(u)T: 

(~ttl(U) + Vutl(u)TVuf(U)63xu = O. 

and the assumption that entropy is conserved where u is smooth, i.e.: 

r + dxq(U) = O. 

Examining viscous perturbation dtu '~ + d x f ( u  '~) = 6d~u 6 in the limit ~ -o 0 leads 
to [6]: 

Definition 2. A weak solution u is called admissible, if for all entropy pairs (t/, q) the 
entropy inequality 

(9) adl(u) + dxq(u)  < 0 

holds in the weak sense. 

R e m a r k  1. Instead of considering weak solutions and weak entropy inequalities 
one may consider the conservation law (1) and the entropy inequality in the space 
of Radon measures, since, by assumption, u e BVIoe(D; O). Then 

(10) O~ := c~,r/(u) + t~xq(u) 

is a Radon measure supported at the discontinuities 7 of u. If B c R 2 is a Borel set 
containing exactly one discontinuity of u then the application of the theorem of 
Gauss-Green-Federer [3] yields 

(11) O,(~) m- f { n t ( ? l ( U L )  - -  ?](UR) ) JV nx(q(u t )  -- q(UR))) dH 1 
Y 

where (nt, nx) T is the normal to ~, UL and uR the left and right limit, respectively, and 
H t the one-dimensional Hausdorff measure. Thus, (1 1) is a Rankine-Hugoniot-like 
condition for the entropy. 

R e m a r k  2. As was pointed out by Sever [13] quite recently, an admissible solution 
is not necessarily unique even in the case of a genuinely nonlinear system. 

An important feature of entropies is their property to transform any hyperbolic 
system (1) into a symmetric hyperbolic system while not changing the set of 
solutions. This symmetrization is due to Mock [8]. Let f2~ s ~ v(s) = Vut/(s)6 ~2 
be the entropy variables and D the transformed state space. Then the following 
theorem is valid. 
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Thenrem 2. The matrix Vvu(v) is positive definite and V~f(u(v))  is symmetric. 
Furthermore u is a weak solution of (1) /f and only if it is weak solution of the 
symmetric hyperbolic system 

(12) c?tu(v) + c3xf(v ) = 0 

where f ( v )  := f (u(v)) .  

In the sequel we will make extensive use of this symmetrization. 
For the numerical solution of systems of conservation laws (1) we consider 

conservative semi-discrete three-point schemes 

dui( t ) 1 
(13) dt Ax (h(w, z) - h(z, v)) 

where v = ui- l ( t ) ,  z = ui(t), w = Ui+l(t) and ui(t):= u(iAx, t), i e Z  on a grid with 
mesh size Ax > 0 in space direction. The function h is called the numerical flux and 
is assumed to be consistent with the flux f i n  the sense of Vs ~ f2: h(s, s) = f ( s ) .  The 
discrete solution constitutes a piecewise constant grid function u a by means of 

(14) ua(x , t ) :=ui ( t ) ;  t ~ O , ( i - � 8 9  < x < ( i +  �89 

To characterize admissible numerical solutions we define the discrete entropy 
inequality to be 

(15) 
drl( ui( t ) ) 1 
- -  < - 7 -  ( H ( w ,  z )  - H ( z ,  v))  

dt = ~ x  

with a numerical entropy flux H consistent with the entropy flux q in the sense of 
Vs~12: H(s, s ) =  q(s). A numerical method (13) yielding solutions which fulfil 
a discrete entropy inequality (15) is called entropy stable. If only equality occurs in 
(15) the scheme is called entropy conservative. Since the choice of H is by no means 
obvious once a scheme is given we insist to call entropy stable schemes entropy 
stable with respect to the numerical entropy f lux H. 

The numerical flux of any three-point scheme can be expressed uniquely in the 
viscosity form 

(16) h(w, z) = �89 + f ( z ) )  - Q(w, z)(w - z) 

where the matrix f2x 12~(w,z) ~ Q(w, z ) e l R  "• is the numerical viscosity co- 

efficient (see [18-1). Clearly, if Q = 0 the resulting flux difference h(w, z) - h(z, v) 
turns out to be the unstable central difference not exhibiting any dissipative 
features. 

We define now the notion of order of a difference scheme. 

Definition 3. A conservative three-point scheme is purely p-th order in space if 

(17) 
1 

-,--(h(w, z) - h(z, v)) = O~f (u)l,=~ + (9(Ax) p . 
I~x  
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Obviously only the values p ~ {0, 1, 2} are possible. Schemes with p = 0 are incon- 
sistent and therefore not very interesting. If the simple time stepping 

dui(t) ui((n + 1)At ) -  ui(nAt) 
(18) - -  - + C(At), n~No 

dt At 

is used, the case p = 1 covers such successful methods as Godunov's and the 
Lax-Friedrichs scheme. A satisfying theory of entropy production of such schemes 
was developed by Tadmor [-16, 17], Osher [-9] and Osher et al. [10] and later 
summarized and enlarged by Tadmor and Osher [11]. It is important to note that 
all these first order schemes satisfying a discrete entropy inequality have the 
favourable property of being total variation diminishing (TVD) schemes, thus 
exhibiting nice monotonicity properties. No oscillations will occur before or after 
shocks. 

The remaining interesting cases are methods of purely 2nd order in space. To 
point out the meaning of Definition 3 we note that the celebrated Lax-Wendroff 
scheme does not belong to this class. This point will be discussed more detailed in 
the following section. 

2 The order of difference schemes and Merriam's conjecture 

The notion of order used in finite difference methods is based on Taylor expan- 
sions. The following theorem characterizes the methods of purely 2nd order in 
space with respect to their numerical viscosity coefficients. 

Theorem 3. A conservative three-point scheme is o f  purely 2nd order in space if  and 
only if  for  the numerical viscosity coefficient the null consistency 

(19) Q(z, z) = 0 

as well as the anti-symmetry consistency 

(20)  
VwQ(w,Z)lw=z = -- VvQ(z, v)l,=~ 

holds for all z ~ (2. 

Proof. Choose the k-th component hk of the numerical flux function h. Let 
w = z + A1, v = z + Az. Taylor expansion yields 

1ATrT2~ " z)lw=zAl + (9([All 3) hk(W,g)=fk(Z) + dTVwhk(W,g)[w=z + 2 lVwnkl, w, 

h k ( Z , v ) = f ~ ( z ) +  AT2Vvhk(Z,v)lv=~ + l T 2 2 A 2 Vvhk(Z, v)lv=zA2 + O(IA2)IS) �9 

The derivatives of the flux function are given by 

Vwhk(W, z)lw=z = �89 - Qk(Z, z) 

Vuhk(z, v)l~:~ = �89 + Qk(z, z) 

V2hk(W, z ) l ~ = z  = 1 2 z V, Jk (Z) -- VwQk(W, Z)[w=~ - (V~Qk(W, z)lw=z) T 

V~h~(z, v ) lo=z  = 1 2V, A(z) + VoQR(Z, v)[v=z + (V, Qk(Z, v) l~==)  T , 
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where Qk denotes the k-th row in the matrix of the numerical viscosity coefficient. 
Expansion of the increments A 1, A2 leads to 

A 1 = W -- Z = NI+ I -- U i 

(ax)  2 2 
= axO~ul  . . . .  + -----~OxUlx=x, -k (9(Ax) 3 

A2 = 1)-- g -~ U i -1  -- Ul 

= - -  AxOxU[ . . . .  + ~ O 2 x u l x = x ,  -k (.9(Ax) 3 . 

Insertion of these terms yields 

hk(w, z )  = f~ (z)  + �89 Ix =x,)TVuA (z)  -- a x ( ~ x u  Ix =x,) T Qk(z, z) 

~_i 2 2 T 4(Ax) (OxU[x=x~) V.fk(z) -- �89 Z) 

+ �88 Ix=x,)TVZ~A(z)AxOxul . . . .  

-- �89 T1Ax~xulx=x, + (.9(Ax) 3 

hk(z, v) =f~ (z) - �89 Ax(0~ul . . . .  )TV.fk (z) -- Ax(Oxul  . . . .  )TQ~(z, z) 

"~ Xg(Ax)2(O2U[x=xi)Tvufk(Z)  "~ �89 z)  

+ �88 . . . .  )TVZ~fk(Z)AXO~UI~=x, 

+ �89 + ( 9 ( A x )  3 , 

where 

/'1: = VwQk(W, z)lw=z + (VwQk(W, z)l~=z) T =:To1 + TT1 

Tz:= VvQk(Z, v)lv=~ + (VvQk(Z, v)lv=z) x = : T o / +  TT2. 

Therefore the difference of the numerical flux can be calculated to give 

hk(w, z) -- hk(z, v) = AX(OxUIx=x,)TV, fk(Z) -- (Ax)2(O2ulx=x,)TQk(Z, z) 

- -  (Ax)2(OxU[x=x,)X[T1 + T2]Oxtt[ . . . .  + (-9(Ax) 3 

Division by Ax and insertion of (O~u[ . . . .  )Tv, fk(z) = O~fk(Z) leads to 

(21) -~x hk(W, z) -- hk(z, v)) = O~fk(Z) -- AX(O2xUIx=x,) T Qk(Z, Z) 

- -  �89 + T2]Oxul . . . .  + C0(Ax) 2 �9 

Writing (Oxu)T[TI + T2]O,u =:<0~u, IT1 + T2]0~u> it follows that 

(OxU, IT1 + T2]OxU) = ( OxU, TxOxU) + (OxU, TzOxU) 

= (OxU, TolOxU) + (OxU, TTIOxu) 

+ (OxU, ToEOxu) + (OxU, TTz3xU) 
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and since for any a ~ IR m and A e IR" • " always ( a, A a )  = ( a, ATa ), the expression 
(Oxu,[T1 + T2]Oxu)= 2(O~u,1-Tol + Toz]O~u) holds. Thus (21) can be ex- 
pressed as 

1 
A~ (hk(W, z) -- hk(Z, V)) = O, fk(Z) -- Ax( O2u[ . . . .  )TQk(Z, Z) 

-- Ax(~UIx=~,)T1-Tol + To2]t~u(x)l . . . .  + (-9(Ax) 2 . 

If the method is of purely 2nd order in space then Qk(z, z) and the sum enclosed in 
square brackets have to vanish for all k. If on the other hand these terms vanish, the 
method is of purely 2nd order space. [] 

Remark 3. The Lax-Wendroff method is based on the Taylor expansion 

(At) 2 
(22) U(X, t + At) = u(x, t) + dit~tu(x, t) + T ~2u(x'  t) + ~)(At) 3 , 

where the time derivatives are replaced by space derivatives using the con- 
servation law. Central differencing of the resulting space derivatives yields the final 

formula defined by the numerical viscosity coefficient QUW(w, z) = ~ ((Vuf(w))  2 + 
At 

(Vu f (z))2) ,  where 2 = Axx" Separating the time stepping (18) leads to 

-- (At) r ' t) + O(At) 2 u(x, t + At)At u(x, t) = ~tu(x, t) + ~ -  

and the remaining At is the reason for the exclusion of this method from the class of 
methods of purely 2nd order in space. 

There is a relation between the notion of order and some properties of numerical 
solutions of finite difference schemes. As was shown by Harten I'5] a three-point 
method which does not produce oscillations (a TVD scheme) is necessarily first 
order accurate. This implies that solutions of second-order three-point schemes 
usually exhibit oscillations before or after shocks and this is in fact observed in 
practice. 

In I-7] Merriam argued that there may also be an intimate relation between 
monotonicity properties (monotone or TVD schemes) and entropy production in 
the sense of the discrete entropy inequality (15). The crucial point in all discussions 
concerning discrete entropy inequalities is the choice of the numerical entropy flux 
H. Since VseO:H(s ,  s) = q(s) is the only a priori requirement we are led to the 
following dilemma: 

Every numerical entropy f lux taken from the set { H : H ( w , z ) = � 8 9  
q(z)) - K(w,  z), K(s, s) = OVs ~ f2} is a consistent numerical entropy flux for any 
three-point method. 

Merriam discusses schemes of the form 

dui( t ) 1 
d---T = - A-'-x (f(ui+�89 - f (ui- �89 
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where u~+�89 = ~(w, z), ui-~ = ~(z, v) are interpolants at cell boundaries. He defines 
a numerical entropy flux to be proper, if the same interpolants are used to build the 
discrete entropy inequality, i.e. 

dq(ui(t)) 1 
- -  < - - - -  (q(ui+•) -- q(ui-~)) . dt = Ax  

Due to his experiences with second order schemes he formulated the following 

Conjecture 1 (Merriam). I f  the solutions of  a second-order three-point scheme satisfy 
the discrete entropy inequality with a proper numerical entropy flux, then these 
solutions exhibit nice monotonicity properties. 

As Merriam we are also not able to prove this conjecture, but we shall prove 
a related theorem. We show that no three-point method which is purely 2nd order 
in space (and thus exhibits oscillations) can satisfy a discrete entropy inequality in 
which a proper numerical entropy flux is used. 

3 Entropy and three-point schemes 

As already mentioned there is a well known theory of entropy production of first 
order methods. It turns out that this theory allows statements which are quite 
similar to Merriam's conjecture. Lax I-6] was the first to prove entropy stability of 
a scheme applied to a system of conservation laws when he showed that the 
Lax-Friedrichs scheme 

(23) hLV(w, Z) = �89  + f ( z ) )  -- 1 (w -- z) 

satisfies a discrete entropy inequality with respect to the numerical entropy flux 

(24) HLF(w, Z) = �89 + q(z)) -- l (rl(W ) -- q(Z)) .  

Note that this numerical entropy flux is choosen quite close to what Merriam 
called a proper flux. 

In the case of the second order Lax-Wendroff method there is a negative result 
by Schonbek 1"12] dating back to 1985: 

Theorem 4 (Schonbek). The Lax-Wendrof fmethod  is not entropy stable, regardless 
what numerical entropy f lux  is used. 

As described above the Lax-Wendroff method is not of purely 2nd order in space, 
since it is based on a Taylor expansion in time. Therefore Q(s, s) 4:0  in general. 
Since Schonbeck extended her proof to the case where the numerical flux of the 
Lax-Wendroff method is perturbed by arbitrary (Ax) z terms, it is also easily 
extendable to all three-point second-order methods with Q(s, s) ~: O. Moreover, 
B6ing and Jeltsch [1] extended Schonbek's theorem to the case of (2k + 1)-point 
Lax-Wendroff-type schemes, k E IN, showing that such a method is only first order 
accurate if a discrete entropy inequality is required to hold. 
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The interesting question whether there are methods of purely 2nd order in 
space which are entropy stable with respect to some numerical entropy flux was 
answered by Tadmor [18]. 

3.1 The Tadmor theory 

We now switch to entropy variables leading to the symmetric system 

(25) ~,u(v) + ~ f ( v )  = o 

wheref(v):=f(u(v)) .  The transformed entropy inequality then reads as 

(26) 8,0(v) + 8x0(v) < 0 

where 0(v) := q(u(v)) and 0(v) := q(u(v)). Three-point schemes now take the form 

d 
(27) ~ u(v,) = - ( h ( <  ~) - ~(e, ~)) 

(28) /~(~, 2) = �89 + f(2)) - (~(~, 2)(k - 2) 

and discrete entropy inequalities are written as 

(29) dt 0(vl) + (_0(k, 2) - H(2, 0)1 < 0 

^ ^ 

Vs~O:H(s,  s) = q(s). 

The following theorem summarizes the results in 1-18]. 

Theorem 5 (Tadmor). Let a three-point scheme be given, defined by its numerical 
viscosity coefficient Q i. This method is entropy stable with respect to the numerical 
entropy flux 

(30) t? ' (~,  2) :=  �89 + 0(2)) - �89 + err(2)) 

+ �89 + ~)~ [~1(~, ~) _ �89  (~, 2) - 0 " ( <  ~))(~ - 2)] 

if and only if 

(31) (~  - ~ )~(~)1(<  2) - 0 " ( <  2) ) (~  - 2) > o ( ~ - ~ ) , o  

Here, Q.* is the numerical viscosity coefficient 

1 

(32) ()*(k, 2) :=  �89 I(2~ - 1)V~f(2 + r - 2))d~, 
0 

of a method called Tadmor scheme. This scheme is entropy conservative with respect 
to the numerical entropy flux 

(33) B*(~,  2)" =�89 + 0(2)) + �89 - 2)T/~'(~, 2) -- �89 + 2T f (2 ) ) ,  
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Remark 4. Note that in the case Q 1 = 0 .  the numerical entropy flux/~" reduces to 
H*. Both numerical entropy fluxes are consistent but by no means proper in any 
sense similar to Merriam's requirements. It is easily seen that Tadmor 's  scheme is of 
purely 2nd order in space. 

A scheme fulfilling (31) is said to contain more numerical viscosity than the 
Tadmor  scheme. 

3.2 The discrete dissipation function 

drh dui 
Since -~- = (Vu~l(z)) r --~ the definition of a three-point scheme yields 

dqi (V,q(z)) T 
- -  = - -  ( h ( w ,  z ) -  h ( z ,  v ) ) .  
dt Ax 

Thus, if a discrete entropy inequality is required to hold we conclude 

- (V, rt(z))T(h(w, z) -- h(z, v)) < - (n (w ,  z) - n ( z ,  v) ) .  

To measure the entropy production we therefore use 

Definition 4. The mapping 

f 2 x O x O ~ ( v , z , w )  r r ( v , z , w ) ~ l R  

defined by 

(34) F(v, z, w ) : =  H(w, z) - H(z,  v) - (V,~l(z))r(h(w, z) - h(z, v)) 

is called the discrete dissipation function. Entropy stable schemes are characterized 
by F < 0, entropy conservative ones by F = 0. 

If the discrete dissipation function exhibits a maximum at (v, z, w) = (z, z, z) the 
corresponding scheme is entropy stable (at least in a neighborhood of (z, z, z)) and 
vice versa. Therefore we conclude 

Proposition 1. Let h6[C2](~'2• H 6 [ C 2 ] ( O x ~ 2 , ] P x )  and ( z , z , z )  root of  
F in a neighborhood ~ z, z) c I2 x f2 x f2. I f  

[ VvF -1 
V w F J ( V , z , w ) l  . . . . .  = 0  

and if the Hessian matrix 

[ [Ov'OvJF]i'j=l(1)m [OviOwJF']i'j=l(1)m ] . . . . .  
V2 wF(/), z, w)l . . . .  z = [OwiOvjF-]i,j=l(1)m [OwiOwjF]i,j=l(1)m 

is neoative definite, then the method defined by the numerical f lux h is entropy stable. 
I f  the Hessian matrix is indefinite, then the method certainly is not entropy stable. 
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3.3 C-consistency 

Since entropy stability can be characterized by maxima of the discrete dissipation 
function at constant states the value (z, z, z) should be a critical point of F. As 
necessary conditions we identify 

V,~F(v, z, w)l . . . . .  = - ((Vuq(z))TVwh(w, z) - VwH(w, z))lw=z : 0 

and the similar expression for the v-derivative. If on the other hand consistency of 
a numerical entropy flux with the compatibility condition (8) is required, we are 
led to 

Definition 5. A numerical entropy flux H satisfying the conditions 

(35) Vs~f2:(Vurl(s))rVvh(s, v)lv=s = vvn(s ,  v)l~=s 

(36) Vs~2:(Vurl(s))TVwh( w, s)lw=~ = vwn(w,  s)lw=~ 

is called c-consistent (compatibility consistent) with respect to h. 

Comparing this consistency requirement with the necessary condition for F to 
exhibit a maximum at constant states we conclude 

Proposition 2. A numerical entropy flux H is c-consistent with respect to h if and only 
if(z, z, z) is critical point of the discrete dissipation function F. 

Furthermore the rate of entropy production is already fixed with c-consistent 
numerical entropy fluxes: 

Proposition 3. Let  H be a c-consistent numerical entropy flux. Then the expression 

(37) F(v, z, w) = (9(Iw - zl 2 + Iz - vl2), 

holds. 

The proof of this lemma follows directly b y  means of Taylor expansions. An 
inspection of the numerical entropy fluxes H ~ and H* used in the Tadmor theory 
shows that both are c-consistent. But there is another characterization of proper 
numerical entropy fluxes which we shall discuss in the sequel. 

3.4 Lax-consistency 

Since three-point schemes are uniquely determined by their numerical viscosity 
coefficients it seems natural to carry the viscosity form over to the definition of 
a proper numerical entropy flux. This corresponds to the selection of the numerical 
entropy flux used by Lax to prove the entropy stability of the Lax-Friedrichs 
scheme (compare with (24)). Thus, a proper numerical entropy flux should have the 
form 

(38) H ( w ,  z)  = �89  + q(z ) )  - (2(w, z ) ( n ( w )  - n (z ) )  
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with a mapping f2 x I2~(w, z) ~ IR to be specified. In order to be c-consistent such 
a numerical entropy flux has to fulfill the condition 

(39) V~tl(z)Q(z, Z) = (Vurl(z) )TQ(z ,  7,) 

which on the left is a vector times a scalar while on the right we have a vector times 
matrix operation. Since the numerical entropy flux Lax used in the case of the 
Lax-Friedrichs scheme satisfies conditions (38) and (39) we give the following 
definition. 

Definition 6. A numerical entropy flux is called Lax-consistent if it can be written 
in the form (38) with a dissipation coefficient Q. If the dissipation coefficient satisfies 
condition (39) the numerical entropy flux is called Lax-c-consistent. 

Remark 5. In [15] the following suggestion is made to construct Lax-consistent 
numerical entropy fluxes: Let 1 ~ IR m. By means of 

A(u) := q(u) 1 

B(u) := q(u) 1 

an entropy vector and an entropy flux vector are defined. The system 

(40) O,A(u) + C~xB(u) < 0 
J 

therefore consists of m identical copies of the entropy inequality. A numerical 
entropy flux vector 7 ~ is defined to be 

(41) ~(w, z) = �89 + B(z)) - .~(w, z)(A(w) - A(z)) 

where .~ is a matrix. By means of this notion we are able to give the following 
recipe: Let the matrix ~ be constructed from Q by means of the substitution rule 

Vi, j = l(1)m:.~ij = Qo 

const. ~ const. \ 

) id( . )  ~ t/(.) 

f ( . )~- - .q( . )  
e~ p2 ~p~3pznt.~ 

where Pl, P2 6~NT; k, 1, se  { 1 , . . . ,  m}. (Take the elements of the numerical viscosity 
coefficient and replace solution values by entropy values, fluxes by entropy fluxes 
and derivatives of fluxes by the corresponding derivatives of the entropy flux). 

The required scalar dissipation coefficient is then constructed by means of 

1 (1)T 7J(W, Z) =:  H(w, z) .  
m 

In the representation 

n ( w ,  z) = �89 + q(z))  - ~ (w ,  z ) (w  - z) 

the dissipation coefficient is therefore given by 

(42) (2(w,z)= 1 ~, ~ .~ij(w,z) 
m i = l j = l  

Here, -~ij are the dements of the matrix .~. 
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3.5 Order and discrete entropy 

With the notion of Lax-consistent numerical entropy fluxes the discretization of 
the flux functions are carried over to the discretization of the entropy fluxes. 
Therefore it would seem natural if Lax-consistent numerical entropy fluxes would 
exhibit the same order of accuracy as the scheme itself. 

Definition 7. Let a three-point scheme defined by the numerical flux h be of purely 
2nd order in space. A numerical entropy flux H is called order preserving, if 

1 
-~x(n(w,  z) - n ( z ,  v)) = Oxq(z) + (9(Ax) 2 . 

The following theorem indicates the importance of Lax-consistent numerical 
entropy fluxes. 

Theorem 6. Let a three-point scheme defined by the numerical flux h be of purely 2nd 
order in space. I f  the numerical entropy flux H is Lax-c-consistent with respect to 
h then H is order preserving. 

Proof. In the definition of c-consistency (35) the k-th (1 < k < m) components are 

(43) ~ ~,,q(S)Ow~h,(w, s)lw=s = t?wkn(w, s)lw=s 
i = 1  

(44) ~, t?u,q(s)Ov~hi(s, v)lv=~ = ov~n(s, v)l~=~ �9 
i = 1  

From the i-th components of the viscosity forms 

hi(w, z) = �89 + f ( z ) )  - ~ Q.(w, z)(w~ - zi) 

hi(z, v) = �89 + f ( v ) )  - ~ Qit(z, v)(zt - vt) 
/ = 1  

with (Qij(w, Z))i.j=l(1)m = Q(w, z) and (Qu(z, v))i,j=i(1)m = Q(z, v) we conclude 

c3w~hi(w, s)lw=s = �89 O.~f(s) - Qik(s, s) 

Ovk hi(s, v)lv=s = �89 + Qik(s, s) . 

Since H is Lax-consistent by assumption the representation 

n(w ,  z) = �89 + q(z)) - Q(w, z)(rl(w ) - rl(z)) 

H(z, v) = �89 + q(v)) - Q.(z, v)(t/(z) - t/(v)) 
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OwkH(w, s)[w=~ = �89 0.k q(s) -- ~.k ~l(s)Q(s, s) 

~vkH(s, v)lv=s = �89 + O.k~l(s)Q(s, s) 

follows. The difference of the conditions (43) and (44) reads as 

~'. c~.,rl(s)(Ow~hi(w, s)lw=~ - a~hi(s, v)lv=.) = O.,~H(w, s)[,~=, -- c~v~H(s, v)l . . . .  
i = l  

which, after insertion of the derivatives, leads to 

ilk(S):= -- 2 ~ O.,tl(s)Qik(S, s) + 2t?,~t/(s)(~(s, s) = O. 
i = l  

Consider V , flk ( S ): 

(45)  V,ilk(s) = -- 2 ~ O.,(V.q(s))Q,k(s, s) - 2 ~ 0., rl(s)V.Q,k(s, s) 
i = 1  i = l  

+ 20~Av.,7(s))(2(s, s) + 2o~(s)V~(2(s ,  s) = o .  

Since V~Qu,(s, s)=VwQe(w, s)lw=~+V~Q~k(z, v)[~=~ and V~O(s, s)=VwQ(w, s)[w=~+ 
V~Q(s, v)lv=~ it follows 

(46) - 2O.k(s)(V.,O_.(w, s)lw=~ + Vo~2(s, v)v=, 

= - 2 Z O.,(V.,7(s))Q,k(s. s) + 20.~ (V.n(s ) )~(s ,  s) 
i = l  

- 2 ~ O.,q(s)(V~,Qik(w, s)lw=s 
i = l  

(47) + VoQMs, v)Iv=~). 

Since the scheme under consideration was assumed to be of purely 2nd order in 
space it follows from Theorem 3 that the null consistency (19) as well as the 
antisymmetric consistency (20) of the numerical viscosity coefficient holds. Since 
the numerical entropy flux was assumed to be Lax-c-consistent it follows from 
condition (39) together with the null consistency (19) that (~(s, s) = 0. Therefore 
(46) boils down to 

20.,tl(s)(VwO_.(w, s)l .=, + V.(~(s, v)l~=,) = 0 

showing the antisymmetric consistency 

v . (~ (w,  s ) l .= .  = - vo(~(s, v)l.=~ 

of the dissipation coefficient. Following Theorem 3 we conclude 

1 
Ax (H(w,  z) - H(z,  v)) = ~gxq(z) + (9(Ax) 2 

and thus H is order preserving. [] 
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In order to be Lax-consistent a numerical entropy flux has to satisfy the condition 
(39). In the scalar case this means Q(z,  z) = Q(z,  z). Looking again at the numerical 
entropy fluxes used in the Tadmor  theory we now show that H* defined in (33) is 
not Lax-consistent in the scalar case. Without loss of generality assume that 2 = 0 
and 4(0) = 0. Then (33) reads as 

t i*(~,  o) = �89 0(~) + �89 ~h(~, 0) - �89  

Assuming this numerical entropy flux to be a proper one the representation (38) 
compared with/-I* yields 

- � 8 9  - �89 0) 
Q(~, o) = 

0(~) 

Let now be O(s) = 2s �9 Then Q(~, 0) = ~ - ( f ( ~ )  - h(~, 0)) and application of the 

Bernoulli 1 Hospital rule shows Q(0, 0) = Vuf(0) and thus 0.(0, 0) 4: Q(0, 0) = 0. 
Therefore this numerical entropy flux is not Lax-consistent. The argument in the 
vector case is similar. 

4 The entropy barrier 

We examine now the behavior of general methods of purely 2nd order in space with 
respect to Lax-c-consistent numerical entropy fluxes. The following considerations 
are based on the use of the entropy variables already defined. Following Theorem 
1 there is a parametrization of genuinely nonlinear k-th characteristic wave fields. 
On such a wave field we fix 2 ~ ~. The parametrization is used for the left state 0 as 
well as for the right state ff and is given by 

(48) = [ O , a , ] ~  ~ 0(~) 

with 

(49) 

(50) 

and 

(51) 

0(0) = 

d 
0(0) = rk(~) 

IR~ [0, a21~6 ~-~ ~(6) 

with 

(52) ~(0) = 

d 
(53) d-6 if(0) = rk(2) 

for sufficiently small al > 0, a2 > 0. Let the parametrized discrete dissipation 
function be the mapping 

(54) /'(~, 6 ) :=  r(o(~), ~, ~ (6 ) ) .  
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Without proof we state two Propositions concerning the derivatives of the para- 
metrized dissipation function, numerical flux functions and numerical entropy 
fluxes. Both proofs are straight forward standard calculations. 

Proposition 4. The derivatives of the parametrized dissipation function F at the point 
(e, 6) = (0, O) are given by 

(55) aj ' (~,  a)l~=~=o = {(v~r(0, ~, ~))~rk(~)}~=,~ 

= { [  - ( v ~ q ( ~ ,  o)) �9 + v ~ ( ~ ,  o )~]rk(~)}~=  ~=~ 

(56) 8~/~(e, b)I~=~=o = {(V,F(0, ~, ~))Trk(:?) 

= [(v.fl(~, ~))~ - v./;(.~, ~)~ ] r~ (~ ) }~=  ~=~ 

(57) a2P(~, a)l~=~=o = {rI(~)V~F(0, s #)r~(~)}~= ~=~ 

+ (V~F(O, ~, ~))T ~-~7 0(0) ~ = ~ = ~ 

(58) = rk(Z)V,F(v,  2, ~)rk(~) 

} + (v , r (o ,  ~, ~))~ ~ ~(o1 ~ = ,  = 

(59) a~a~/~(e, ~)1~=~=o = 0.  

The Hessian matrices of the parametrized dissipation function at the point 
(~, s ~) = (s ~, s read as 

(60) V2F(0,~, ~)l~=,=~= { -  V~/~(~, 0) + ~ ~,V2/~(', 0)} 
i=~ ~ = ~  

(61) V~F(O,,, ~)[~=,=, -~- { V2/~(1V,') - -  ~ ~ 2^ ~ ^ }ziV,~hi(w,z) 
i=i ~=t3 

Proposition 5. Let a method of purely 2nd order in space defined by its numerical flux 
function h be given. Let the numerical entropy flux H defined by its dissipation 
coefficient Q be Lax-c-consistent. For the i-th (1 <_ i <_ m) components of the numer- 
ical flux the expressions 

(62) Ve/~,(~, ~)I~ =, = } V,~(~) 

(63) V~/~,(s = [ { � 89163  + a~,Q.,,(s 0) + a~,Q.,R(s ~)}~=~]k,l=l{l)ra 

(64) Vfl~,(@, s = �89163 

(65) V~/~,(@, ~)1,=~ = [{�89 - 8~Q.,,(~, s + a,,O,k(~, s 

are valid and for the numerical entropy flux 

(66) V~H(r 0)I~ =e = �89163 
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( 6 7 )  V~/4(~, ~)1~=~ = [{�89 + ~,~(~, ~)0~0(~) 

+ a~,O(e, e)a~,O(~)b =,]~.,=, .~.. 
( 6 8 )  V,H(u3, ~)l~=e = �89 

(69) V,H(w,2 ̂  ~ 2)[,=e = [{2a~o~,O(z)l ^ - a,,~(~, 2)t?~O(~) 
'Z 

hold. 
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(70) 

2. The expression 

(71) 

is valid. 

Proposition 6. 1. The derivatives of the transformed entropy are given by 

Vk = l(1)m:c?,~O(~ ) = ~ ~jO~ui(~ ) . 
j = l  

V ~ u  = [ v . ~ ( u ( v ) ) ]  - ~  . 

3. The second derivatives of the transformed entropy flux are 

(72) Vk, 1 = l(1)m:t?~t?~,0(v) = ~" vjO~O~,~(v) + a ~ f ( v ) .  
j = l  

Proof 
1. I lk  = l(1)m then: 

a~O(v) = &~,l(u(v)) = (V.~(u(v)))T a~u(v) 

= ~ v~v~uj(v). 
j = l  

2. Due to strict convexity of t/ the mapping u ~-, v(u)= Vuq(u) is invertible. 

Differentiating the identity v(u(v)) = V,q(u(v)) with respect to v yields 

I = V2rl(u(v))V~u. 

3. The k-th component of the transformed compatibility relation is given by 

1=1 

Differentiating again with respect to a v~ shows (72). [] 

We are now able to state and prove the following theorem concerning the entropy 
production of purely 2nd order three-points methods with respect to Lax-c- 
consistent numerical entropy fluxes. 

Theorem 7. No three-point scheme which is purely 2nd order in space is entropy 
stable with respect to a Lax-c-consistent numerical entropy flux. 

The following Proposition describes consequences of the transformed compatibil- 
ity condition. 
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Proof If a method under consideration is entropy stable then /~(e, 6) exhibits 
a maximum at the point (e, 6 ) =  (0, 0). Since we are concerned with Lax-c- 
consistent numerical entropy fluxes this point is also a critical point of F as can be 
seen from Proposition 2. We prove that 

{~F(~ ,  6 ) ~ ? ( e ,  8) - ( ~ F ( ~ ,  8))2},~ < 0 
and 

{0~/'(~, 8) + a~(~ ,  8)h=~=o = 0,  

such that at (e, 8) = (0, 0) certainly no extremum occurs in/~. 
Since (e, 8) = (0, 0) is critical point of/~ (or equivalently (~, ~, ~) is critical point 

of F) the second derivatives of the parametrized dissipation function boil down to 

(73) 0~2/~(e,/~)1~=~=o = {r , (~)vvgr(  o, ~, k)rk(~)}~=,=~ 

(74) 0~/~(e, &)l~=o=o = {rk(~)TV~F(O, ~, ~)rk(~)}~=r �9 

From (60) and (61) with the help of(62), (65), (67) and (69) we get expressions for the 
Hessian matrices of the parametrized dissipation function. 

(75) V~F(~, ~, ~).e=~=~= = I { -  �89 -0e,~(~,  ~3)~ 

+ i ,,o~.(2,,(~.o)+ i ',o~,Q,~(~.o)l 1~.,=,.,~ 
i = 1  i = 1  J ~ = r  

(76) 2 = 

i = 1  

Insertion of the second derivatives of the transformed entropy flux (72) yields 

i = 1  i = 1  ~ = ~  /r = I (1)ra 

t = 1  i = 1  # = ~  k , / =  1 (1) m 
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Since the methods are of purely 2nd order in space by assumption, from Theorem 
3 follows the antisymmetric consistency of the numerical viscosity coefficient. Since 
the entropy flux is assumed to be Lax-c-consistent the antisymmetric consistency 
carries over to the dissipation coefficient by means of Definition 6, yielding 

V~r(e,  e, ~)1~=~=~ = 2 - V ~ F ( O ,  ~, f f ) l ~ = ~ = ~ .  

Let the real number on the right side of (73) be denoted by ~. Thus 

{~F(~ ,  8)0~/'(~, 6) - (a~0~/ ' (~ ,  6 ) ) 2 } ~ = ~ = 0  = - ~2 _-< 0 ,  

since the mixed derivative vanishes according to Proposition 4. Furthermore 

{O~/~(e, 6 ) +  8~?(e-6)}~=,=o = 0 ,  

holds, so that both second derivatives can be never be positive simultaneously. 
Furthermore we have ~P = 0 if and only if for the Jacobian matrix of the flux 
function the expression 

i = 1  i = 1  ~ = ~  k,l=l(1)m 

is valid. The value of the Jacobian at the point ~ on the left of this equation is 
independent of any numerical scheme, the right hand side depends on the method 
used. Therefore in general 7 ~ 4= 0. [] 

5 C o n c l u s i o n  

The inability of three-point methods of purely 2nd order in space to satisfy 
a discrete entropy inequality with a proper numerical entropy flux was shown. The 
requirement of 2nd order accuracy in space by means of a three-point stencil and 
simultaneous satisfaction of a proper discrete entropy inequality can thus not be 
met. It is interesting to note that in the case of Lax-Wendroff type methods (in the 
sense that Q(z, z) 4: 0) no entropy stability can be achieved, while in the class of 
methods of purely 2nd order in space there are numerical entropy fluxes indicating 
entropy stability (see Tadmor theory). Only if a Lax-c-consistent numerical en- 
tropy flux is used these methods are also not entropy stable. 

It would be interesting to study second order schemes which use a wider stencil, 
for example 5-point TVD schemes. Unfortunately the viscosity form is then no 
longer the unique representation of such schemes so that additional problems 
occur. If it would be possible to prove that some 5-point TVD methods are entropy 
stable with respect to a proper discrete entropy inequality we would be much closer 
to a proof of Merriams conjecture. 
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